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Ratio asymptotic results give the asymptotic behaviour of the ratio between two
consecutive orthogonal polynomials with respect to a positive measure. In this
paper, we obtain ratio asymptotic results for orthogonal matrix polynomials and
introduce the matrix analogs of the scalar Chebyshev polynomials of the second
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1. INTRODUCTION

In 1979, Nevai established (see [N, Th. 13, p. 33]) the following result
concerning ratio asymptotic properties for orthogonal polynomials:

Let ( pn)n be a sequence of orthonormal polynomials with respect to a
measure + and satisfying the three-term recurrence formula

tpn(t)=an+1 pn+1(t)+bn pn(t)+anpn&1(t), n�0,

with initial conditions, p0(t)=1 and p&1(t)=0 ((an)n , (bn)n sequences of
real numbers with an{0, n�1). Assume that

lim
n � �

an=a{0, lim
n � �

bn=b.

Then,

lim
n � �

pn&1(z)
pn(z)

=
1

2a
((z&b)&- (z&b)2&4a2) ,

uniformly on compact sets of C"supp(+).
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The class of measures satisfying the previous hypothesis is called the
Nevai class and it is denoted by M(a, b). Let us notice that

1
2a

((z&b)&- (z&b)2&4a2)=
1

2a? |
b+2a

b&2a

- 4a2&(x&b)2 dx
z&x

and that

1
2a2?

- 4a2&(x&b)2 /[b&2a, b+2a](x)

is the weight function for the orthonormal polynomials (rn)n which satisfy
the following three-term recurrence relation with constant recurrence
coefficients:

trn(t)=arn+1(t)+brn(t)+arn&1(t), n�0.

It is clear that rn(t)=un((t&b)�2a), where (un)n are the Chebyshev
polynomials of the second kind corresponding to the case a= 1

2 , b=0.
Nevai's result completes the so-called Blumenthal theorem, which

establishes that for a measure + in the Nevai class, supp(+) is the compact
interval [b&2a, b+2a] and, possibly, two sequences outside this interval
which tend to the extreme points of it. Hence, the support of a measure in
the Nevai class is bounded. The above ratio asymptotic result has been
extended for sequences of orthogonal polynomials in unbounded sets by
Van Assche (see [V1, V2]), and recently a technique to find the ratio
asymptotics between a polynomial sn and the n th orthonormal polynomial
pn with respect to a positive measure has been developped by the author
(see [D1]).

The purpose of this paper is to extend ratio asymptotics to orthogonal
matrix polynomials.

We consider an N_N positive definite matrix of measures W (for any
Borel set A/R, W(A) is a positive semidefinite numerical matrix), having
moments of every order, i.e., the matrix integral �R tn dW(t) exists for any
nonnegative integer n.

Assuming that � P(t) dW(t) P*(t) is nonsingular for any matrix polyno-
mial P with nonsingular leading coefficient, the matrix inner product
defined in the usual way by W in the space of matrix polynomials has a
sequence of orthonormal matrix polynomials (Pn)n , satisfying

| Pn(t) dW(t) P*m(t)=$n, mI, n, m�0.
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Pn(t) is a matrix polynomial of degree n, with a non-singular leading
coefficient and is defined up to a multiplication on the left by a unitary
matrix.

As in the scalar case, the sequence of orthonormal matrix polynomials
(Pn)n satisfies a three-term recurrence relation

tPn(t)=An+1Pn+1(t)+BnPn(t)+An*Pn&1(t), n�0, (1.1)

where P&1(t)=%, P0(t) # CN_N"[%], An are nonsingular matrices and Bn

are hermitian. Here and in the rest of this paper, we write % for the null
matrix, the dimension of which can be determined from the context. We
remark that the polynomials Qn(t)=Un Pn(t), with UnUn*=I, are also
orthonormal with respect to the same positive definite matrix of measures
with respect to which the (Pn)n are orthonormal, and satisfy a three-term
recurrence relation as (1.1) with coefficients Un&1 AnU n* instead of An and
Un BnUn* instead of Bn .

This three-term recurrence relation characterizes the orthonormality of a
sequence of matrix polynomials with respect to a positive definite matrix of
measures (see, for instance, [AN] or [DL]). In [D2], [D3], and [DV]
a very close relationship between orthogonal matrix polynomials and
scalar polynomials satisfying a higher order recurrence relation has been
established. This relationship has been used to show that matrix
orthogonality is a useful tool for solving certain problems of scalar
orthogonality (see [D2, Section 5]). Orthogonal matrix polynomials on
the real line are also related to matrix continued fractions and then to
network models (see [BB]).

Given two matrices A and B (B hermitian), we say that a sequence of
orthonormal matrix polynomials (Pn)n satisfying (1.1) is in the matrix
Nevai class M(A, B) if limn An=A, limn Bn=B. We say that a positive
definite matrix of measures W is in the Nevai class M(A, B) if some of its
sequences of orthonormal polynomials are in M(A, B). Let us notice that
a positive matrix of measures W can belong to several Nevai classes, since
the sequence of orthonormal polynomials with respect to W is not unique
(recall that orthogonal polynomials are defined up to multiplication on the
left by unitary matrices: see above).

When A is nonsingular, we associate to the matrix Nevai class M(A, B)
the orthonormal matrix polynomials (U A, B

n )n defined by the recurrence
formula

tU A, B
n (t)=A*U A, B

n+1(t)+BU A, B
n (t)+AU A, B

n&1(t), n�0, (1.2)

with initial conditions U A, B
0 (t)=I, U A, B

&1 (t)=%. This sequence is orthonor-
mal with respect to a positive definite matrix of measures we denote by
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WA, B , which are matrix analogs of the Chebyshev polynomials of the
second kind. Let us notice that from U A, B

0 (t)=I it follows that
� dWA, B(t)=I.

In the scalar case orthonormal polynomials with constant coefficients in
the three-term recurrence relation can be reduced to Chebyshev polyno-
mials of the second kind via a linear change of variable (see above). In the
matrix case the situation is more interesting and rich. Indeed, we will show
that, except for trivial examples (for instance, when A is normal and com-
mutes with B), Chebyshev matrix polynomials (U A, B

n )n form a wide class
of essentially different examples of orthonormal matrix polynomials.

To establish the ratio asymptotic results, we need the following defini-
tions: 2n stands for the set of zeros of the matrix polynomial Pn , i.e., the
zeros of det(Pn). In [DL], [SV], it is proved that these zeros are real and
have multiplicity at most N. We finally put

1= ,
N�0

MN , where MN= .
n�N

2n . (1.3)

It is proved in [DL] that orthogonalizing matrices of measures + for the
matrix polynomials (Pn)n can be found as weak accumulation points of a
sequence of discrete matrices of measures +n with support precisely 2n . We
will show that a matrix of measures W in the Nevai class M(A, B) has
compact support and hence is uniquely determined from its sequence of
orthogonal matrix polynomials. As a consequence of this we have that
supp(W )/1.

In Section 2 we establish the following ratio asymptotic result for the
matrix Nevai class M(A, B), assuming that A is nonsingular:

Theorem 1.1. Let (Pn)n be orthonormal matrix polynomials satisfying
the three-term recurrence relation (1.1). Assume that limn An=A, limn

Bn=B with A nonsingular. Then

lim
n � �

Pn&1(z) P&1
n (z) A&1

n =|
dWA, B(t)

z&t
, z # C"1, (1.4)

where WA, B is the matrix weight for the Chebyshev matrix polynomials of
the second kind defined by (1.2). Moveover, the convergence is uniform for
z on compact subsets of C"1.

Writing

FA, B(z)=|
dWA, B(t)

z&t
, (1.5)
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we deduce from this theorem that this analytic matrix function satisfies the
matrix equation

A*FA, B(z) AFA, B(z)+(B&zI ) FA, B(z)+I=%, z # C"1. (1.6)

We will show that in the matrix version of Nevai's ratio asymptotic
result, the matrices Pn&1 and P&1

n must be multiplied in the order
Pn&1P&1

n ; otherwise the result could be false.
We complete Section 2 solving the matrix equation (1.6) when A is

hermitian, finding an explicit expression for FA, B(z). To illustrate this
expression we show it here for the simpler case when A is positive definite:
setting A&1�2 for the unique positive definite square root of A we have

FA, B(z)= 1
2A&1(zI&B) A&1

& 1
2A&1�2(- A&1�2(B&zI ) A&1(B&zI ) A&1�2&4I ) A&1�2.

(1.7)

The square root which appears in this formula should be understood as
follows: if A is positive definite and B is hermitian then we will show that
the matrix A&1�2(zI&B) A&1�2 is diagonalizable except for at most finitely
many complex numbers z's, and hence the matrix

HA, B(z)=A&1�2(zI&B) A&1(zI&B) A&1�2&4I (1.8)

is also diagonizable, its eigenvalues being of the form a2&4 where a is an
eigenvalue of A&1�2(zI&B) A&1�2; we take the square root - z such that
|z&- z2&4|<2 for z # C"[&2, 2], and hence the function z&- z2&4 is
analytic in z # C"[&2, 2]. We then define the matrix square root

- A&1�2(zI&B) A&1(zI&B) A&1�2&4I

in the natural way, i.e., using the diagonal form of the matrix and applying
the chosen square root to its eigenvalues.

In Section 3, using the ratio asymptotic results proved in Section 2, we
give, when A is positive definite, the following explicit expression for the
weight WA, B with respect to which the Chebyshev matrix polynomials
(U A, B

n )n are orthonormal: consider the diagonal form of the matrix
polynomial &HA, B(x), x # R, defined by (1.8) (let us notice that for x
real, &HA, B(x) is hermitian), that is, &HA, B(x)=U(x) D(x) U*(x),
where D(x) is a diagonal matrix with entries di, i (x), i=1, ..., N, and
U(x) U(x)*=I. Then the matrix weight WA, B(x), x # R, has the form

dWA, B(x)=
1

2?
A&1�2U(x)(D+(x))1�2 U*(x) A&1�2 dx,
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where D+(x) is the diagonal matrix with entries

d +
i, i (x)=max[di, i (x), 0].

The support of WA, B is then the set of real numbers

supp(WA, B)=[x # R : A&1�2(xI&B) A&1�2 has an eigenvalue in [&2,2]].

We will prove that it consists of a finite union of at most N disjoint
bounded nondegenerate intervals.

The knowledge of the support of WA, B leads us to extend Blumenthal's
theorem for the matrix Nevai class M(A, B) (see [DL] for a partial result
in this way). We complete this section with some examples.

It is worth noticing that many interesting questions concerning the
weight matrix WA, B for the Chebyshev matrix polynomials of the second
kind remain unsolved. Indeed, the main one is to find the general expres-
sion for WA, B . When A is positive definite, we will prove that WA, B is
absolutely continuous with respect to the Lebesgue measure multiplied by
the identity matrix, with a continuous matrix Radon�Nikodym derivative
and lives on a finite union of at most N disjoint bounded nondegenerate
intervals. For A hermitian, we give an example where WA, B is again
absolutely continuous with respect to the Lebesgue measure but with an
unbounded Radon�Nikodym derivative. But, in the general case, is WA, B

still living on at most N disjoint bounded intervals? Are its entries
absolutely continuous with respect to the Lebesgue measure, or can Dirac
deltas appear?

In Section 4 we study the degenerate case, that is, when A is singular. In
a sense we will explain below, this case is surprisingly interesting. We first
prove that also for A singular, orthonormal matrix polynomials in M(A, B)
have ratio asymptotics:

Theorem 1.2. Let (Pn)n be orthonormal matrix polynomials satisfying
the three-term recurrence relation (1.1). Assume that limn An=A,
limn Bn=B with A singular. Then there exists a positive definite matrix of
measures & such that

lim
n � �

Pn&1 P&1
n (z) A&1

n =|
d&(t)
z&t

=FA, B(z), z # C"1,

and the convergence is uniform for z on compact subsets of C"1. Moreover,
the analytic function FA, B satisfies that

A*FA, B(z) AFA, B(z)+(B&zI ) FA, B(z)+I=%, z # C"1.
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Notice that for A singular we have not identified the matrix of measures
& as we did when A is nonsingular (in this case &=WA, B , where WA, B is
the matrix weight of the Chebyshev matrix polynomials). The reason is
that the structure of the degenerate case is so rich that it contains many
other matrix ratio asymptotic problems corresponding to matrices of lower
size. Indeed, consider the N-Jacobi matrix associated to the sequence of
matrix Chebyshev polynomials of the second kind satisfying the three-term
recurrence relation (1.2), that is, the (4N&1)-banded infinite hermitian
matrix defined by

J=\
B
A
%
b

A*
B
A
b

%
A*
B
. . .

%
%

A*
. . .

} } }
} } }
} } }
. . .+ . (1.9)

This N-Jacobi matrix can also be considered when A is singular, even
though in this case the recurrence formula (1.2) does not define a sequence
of matrix polynomials. Then, suitable choices of the singular matrix A will
show how many different ratio asymptotic problems are included in this
degenerate case. For instance, for the special case when the matrices A and
B of size N_N have the form

A=\
0
0
b
0

} } }
} } }
. . .
} } }

0
0
b
0

a0

0
b
0 + ,

B=\
b0 a1 0 0 } } } 0

+ ,

a1 b1 a2 0 } } } 0

0 a2 b2 a3 } } } 0

b b . . .
. . .

. . . b
0 0 } } } aN&2 bN&2 aN&1

0 0 } } } 0 aN&1 bN&1

where a0{0, the N-Jacobi matrix defined by (1.9) is three diagonal, and it
is actually the Jacobi matrix associated to a sequence of scalar orthonor-
mal polynomials: the so-called orthogonal polynomials with periodic
recurrence coefficients of period N (studied by, among others, Van Assche
and Geronimo, see [V1, Chap. 2], [V3], [GV]). The simplest case of
these polynomials comprises the Chebyshev scalar polynomials of the
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second case which corresponds to the ratio asymptotic problem studied by
Nevai. Analogously, we can consider the matrix case of periodic recurrence
coefficients with period l. This case is obtained by taking A of size lN_lN
with a unique nonnull block entry of size N_N in the upper right corner,
and B a (4N&1)-banded hermitian matrix. The Chebyshev matrix polyno-
mials of the second kind which correspond with the ratio asymptotics
problem studied in Theorem 1.1 appear as a particular case.

From what we have explained, it is clear that the identification of the
matrix of measures & will be more difficult than for A nonsingular and will
have a strong dependence on the particular structure of the matrices A and
B. However, we prove that this matrix of measures & is always degenerate,
that is, there exists a matrix polynomial P with nonsingular leading coef-
ficient for which � P(t) d&(t) P*(t) is singular (indeed, we show that
� (tI&B) d&(t)(tI&B)* is always singular); consequently, & cannot have a
sequence of orthogonal matrix polynomials. We complete this section
showing that & can be degenerate in different forms: for instance when
A=( 0

0
a
0 ), a{0, and B=( b

c
c
d) (which corresponds, as we have explained

above, to the orthogonal polynomials with periodic recurrence coefficients
of period 2), the matrix of measures & is equal to

&=1\
1

t&b
c

t&b
c

\t&b
c +

2+ +, (1.10)

where + is the positive measure with respect to which the associated
orthogonal scalar polynomials with periodic recurrence coefficients are
orthonormal.

Another example shows that & can be equal to a matrix whose entries are
Dirac deltas on some subspace of CN (that is, the case when one eigenvector
u of B satisfies uA*=%).

2. RATIO ASYMPTOTICS FOR ORTHONORMAL MATRIX
POLYNOMIALS

Without loss of generality, we assume P0(t)=I.
In the proof of Theorem 1.1 we need to use that matrix weights in the

matrix Nevai class MA, B have compact support:

Lemma 2.1. Let (Pn)n be a sequence of matrix polynomials in the matrix
Nevai class M(A, B). Then there exists a positive constant M>0, which does
not depend on n, such that |xn, k |�M for every zero xn, k of Pn . Moreover,
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the sequence (Pn)n has a unique matrix weight W, and this matrix weight has
compact support contained in [&M, M]. In particular, the Chebyshev weight
WA, B has compact support.

Proof. Consider the N-Jacobi matrix associated to (Pn)n , that is, the
(4N&1)-banded infinite hermitian matrix defined by

J=\
B0

A1*
%
b

A1

B1

A2*
b

%
A2

B2
. . .

%
%

A3
. . .

} } }
} } }
} } }
. . . + .

In Lemma 2.1, p. 101 of [DL], it is proved that the zeros of Pn are the
eigenvalues of JnN (JnN is the truncated N-Jacobi matrix of dimension nN ).
Taking into account that (An)n and (Bn)n converge, and using the
Gershgorin disk theorem for the location of eigenvalues, it follows that
there exists M>0 such that if xn, k is a zero of Pn then |xn, k |�M. So the
set of real numbers 1 defined by (1.3) is also contained in [&M, M], and
then supp(W )/1/[&M, M]. K

We are now ready to prove Theorem 1.1, which establishes the ratio
asymptotic behaviour of orthonormal matrix polynomials in the matrix
Nevai class M(A, B) with A nonsingular. The technique we use in the proof
is the matrix version of the proof given in [D1].

Proof. First, we prove that

lim
n � �

Pn&1(z) P&1
n (z) A&1

n =|
dWA, B

z&t
,

for z # C"1.
To do this, we consider the sequence of matrices of discrete measures

(+n)n defined by

+n= :
m

k=1

$xn, k
Pn&1(xn, k) 1n, kP*n&1(xn, k), n�0, (2.1)

where xn, k , k=1, ..., m, are the different zeros of the polynomial Pn , and
the matrix 1n, k is given by

1n, k=
1

(det(Pn(t)) (lk) (xn, k)
(Adj(Pn(t)))(lk&1) (xn, k) Qn(xn, k), (2.2)

lk being the multiplicity of the zero xn, k and Qn the polynomial of the
second kind. We recall that the matrix 1n, k is the weight in the quadrature
formula for (Pn)n associated to the zero xn, k and that lk�N (see
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Theorem 3.1, p. 1186 of [D4]). Hence, from this quadrature formula it
follows that

| d+n(t)=I, for n�0.

We proceed in several steps:

First step. For a given nonnegative integer n, we have that

Pn&1(z) P&1
n (z) A&1

n =|
d+n(t)
z&t

. (2.3)

In fact, from (3.3), p. 1186 of [D4], it follows that the decomposition

Pn&1(z) P&1
n (z)= :

m

k=1

Cn, k
1

z&xn, k

is always possible, even though the zeros of Pn can be of multiplicity
greater than one.

It is clear that the matrices Cn, k are equal to

Cn, k=
1

(det(Pn(t))(lk) (xn, k)
Pn&1(xn, k)(Adj(Pn(t))) (lk&1) (xn, k).

Then we have

Cn, kA&1
n =

1
(det(Pn(t)) (lk) (xn, k)

Pn&1(xn, k)(Adj(Pn(t))) (lk&1) (xn, k) A&1
n .

Now, from the Liouville formula for (Pn)n (see (2.6), p. 1183 of [D4]), it
follows that

Cn, kA&1
n =

1
(det(Pn(t)) (lk) (xn, k)

Pn&1(xn, k)(Adj(Pn(t)))(lk&1) (xn, k)

_(Qn(xn, k) P*n&1(xn, k)&Pn(xn, k) Q*n&1(xn, k)).

Part (4) of Theorem 2.3, p. 1184 of [D4] gives that

Cn, kA&1
n =

1
(det(Pn(t)) (lk) (xn, k)

Pn&1(xn, k)(Adj(Pn(t)))(lk&1) (xn, k)

_Qn(xn, k) P*n&1(xn, k)

=Pn&1(xn, k) 1n, kP*n&1(xn, k),

and the first step is proved.
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Using the first step, we have to prove that

lim
n � � |

d+n(t)
z&t

=|
dWA, B(t)

z&t
, for z # C"1.

Second step. Let us consider the Chebyshev matrix polynomials of
the second kind (U A, B

n )n defined by (1.2). Then

lim
n � � | U A, B

l (t) d+n(t)={I,
%,

for l=0,
for l{0.

(2.4)

According to the definition of the matrix of measures +n , we have

| U A, B
l (t) d+n(t)= :

m

k=1

U A, B
l (xn, k) Pn&1(xn, k) 1n, kP*n&1(xn, k). (2.5)

We can write

U A, B
l (t) Pn&1(t)=S l, n(t) Pn(t)+ :

n

i=1

2i, l, n Pn&i (t), (2.6)

where S l, n(t) is a matrix polynomial of degree not greater than l&1 and
2i, l, n , i=1, ..., n, are numerical matrices.

Then, from (2.5) and (2.6), we get

| U A, B
l (t) d+n(t)= :

m

k=1
\Sl, n(xn, k) Pn(xn, k)+ :

n

i=1

2i, l, n Pn&i (xn, k)+
_1n, kP*n&1(xn, k).

The definition of 1n, k and Theorem 2.3(3), p. 1184 of [D4], show that
Pn(xn, k) 1n, k=%, and so

| U A, B
l (t) d+n(t)= :

m

k=1
\ :

n

i=1

2i, l, nPn&i (xn, k)+ 1n, kP*n&1(xn, k). (2.7)

Since 2n&i&1�2n&1 for all i=1, ..., n, from the quadrature formula for
(Pn)n (see (3.2) in Theorem 3.1, p. 1186 of [D4]), we get that

| U A, B
l (t) d+n(t)= :

n

i=1
| 2 i, l, nPn&i (t) dW(t) P*n&1(t)=21, l, n . (2.8)
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Step two will follow if we prove that

lim
n � �

2k, l, n={I,
%,

for k=l+1,
for k{l+1.

(2.9)

We use induction on l. When l=0 the result is immediate since 21, 0, n=I
and 2i, 0, n=% for i{1.

Now suppose the result is valid up to l. The three-term recurrence
formula for the matrix polynomials (U A, B

n )n gives that

U A, B
l+1(t) Pn&1(t)=(A*&1tU A, B

l (t)&A*&1BU A, B
l (t)

&A*&1AU A, B
l&1(t)) Pn&1(t).

The formula (2.6) and the three-term recurrence formula for the matrix
polynomials (Pn)n give that

2k, l+1, n=A*&1(2k, l, n Bn&k+2k&1, l, nA*n&k+1+2k+1, l, nAn&k)

&A*&1B2k, l, n&A*&1A2k, l&1, n .

For k�l+3 or k�l&1, the induction hypothesis shows that limn � �

2k, l+1, n=%. For k=l, l+1 and l+2, from the induction hypothesis and
taking into account that limn An=A and limn Bn=B, it follows respec-
tively that

lim
n � �

2l, l+1, n=A*&1A&A* &1A=%,

lim
n � �

2l+1, l+1, n=A*&1B&A*&1B=%,

lim
n � �

2l+2, l+1, n=A*&1A*=I.

We are now ready to prove that

lim
n � � |

d+n(t)
z&t

=|
dWA, B(t)

z&t
, for z # C"1.

If not, we can find a complex number z # C"1, an increasing sequence of
nonnegative integers (nm)m and a positive constant C for which

"|
dWA, B(t)

z&t
&|

d+nm
(t)

z&t "2

�C>0, m�0, (2.10)

where we write & }&2 for the spectral norm of a matrix.
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Since (+n)n is a sequence of positive definite matrices of measures, with
compact support contained in [&M, M] (see Lemma 2.1) and � d+n=I,
we can obtain (by using Banach�Alaoglu's theorem) a subsequence (lm)m

from (nm)m , and a positive definite matrix of measures & having compact
support contained in [&M, M] such that

lim
m � � | f (t) d+lm

(t)=| f (t) d&(t),

for any continuous matrix function f defined in [&M, M]. Hence, by
taking f (t)=U A, B

l (t), we have

lim
m � � | U A, B

l (t) d+lm
(t)=| U A, B

l (t) d&(t).

Step two now gives that

| U A, B
l (t) d&(t)={I,

%,
for l=0,
for l{0.

But, the sequence of matrix polynomials (U A, B
l ) l is orthonormal with

respect to WA, B , and hence

| U A, B
l (t) dWA, B(t)={I,

%,
for l=0,
for l{0.

Since (U A, B
l ) l is a basis of the space of matrix polynomials, and &, WA, B

have compact support, we get that &=WA, B , and (2.10) is impossible.
The uniform convergence on compact sets of C"1 follows from the

Stieltjes�Vitali theorem, since it is straightforward to see that the entries
of the matrix � d+n(t)�(z&t) are uniformly bounded on compact sets of
C"1. K

It is worth noting that the order in which the polynomials Pn&1 and P&1
n

are multiplied in the ratio asymptotic result proved in Theorem 1.1, i.e.,
Pn&1P&1

n , is essential to guarantee the validity of this result. Indeed, let W
be a positive definite matrix of measures and (Pn)n its orthonormal matrix
polynomials. Let us consider a nonsingular matrix C, and the positive
definite matrix of measures defined by T=CWC*. It is clear that
Rn=PnC&1 are orthonormal matrix polynomials for T which satisfy the
same matrix three-term recurrence relation as the (Pn)n (but with different
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initial condition). Hence, if the ratio asymptotic result were true for
P&1

n (z) Pn&1(z) A&1
n , we would have

lim
n

R&1
n (z) Rn&1(z)=|

dWA, B(t)
z&t

A,

but also

lim
n

R&1
n (z) Rn&1(z)=lim

n
CP&1

n (z) Pn&1(z) C&1=C |
dWA, B(t)

z&t
AC&1,

which, in general, is clearly false.
From the three-term recurrence relation for the matrix polynomials

(Pn)n and the above asymptotic result, we can get a matrix formula for
the analytic function FA, B(z)=� dWA, B(t)(z&t). Indeed, multiplying the
three-term recurrence formula by P&1

n (z) we find that

zI=An+1Pn+1(z) P&1
n (z)+Bn+An*Pn&1(z) P&1

n (z).

Taking the limit as n � �, we get that

zI=F &1
A, B(z)+B+A*FA, B(z) A,

which can be written as

A*FA, B(z) AFA, B(z)+(B&zI ) FA, B(z)+I=%. (2.11)

When A is hermitian, we are able to solve this matrix equation, finding
an explicit expression for the function FA, B(z). In order to illustrate this
procedure we first solve the equation assuming A is positive definite, since
in this case the expression for FA, B(z) is simpler.

To show the expression for FA, B(z) we need the following general result
for diagonalizable matrices:

Lemma 2.2. If A and B are hermitian matrices, then the matrix Az+B
is diagonalizable except for at most finitely many complex numbers z's.

For the sake of completeness we include an elementary proof of this
result at the end of this section.

For A positive definite, set A1�2 for the unique positive definite square
root of A. Applying Lemma 2.2 to A&1�2(B&zI ) A&1�2 (B is hermitian), it
follows that the polynomial

A&1�2(B&zI ) A&1(B&zI ) A&1�2&4I (2.12)
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is diagonalizable except for at most finitely many complex numbers z's
(notice that these exceptional values can not be real numbers since (2.12)
is hermitian for z real). Its eigenvalues are of the form a2&4, for a an
eigenvalue of A&1�2(B&zI ) A&1�2. If we take the square root - z such that
|z&- z2&4|<2 for z # C"[&2, 2], then the function z&- z2&4 is
analytic in z # C"[&2, 2]. For z such that the eigenvalues of
A&1�2(B&zI ) A&1�2 are in C"[&2, 2], we define the matrix

- A&1�2(zI&B) A&1(zI&B) A&1�2&4I

in the natural way, i.e., using the diagonal form of the matrix and applying
the chosen square root to its eigenvalues.

First of all, we remark that this definition does not depend on the choice
of the diagonal form of A&1�2(B&zI) A&1�2 (see for instance [HJ2,
pp. 407�408]). The chosen matrix square root defines an analytic function
of z in C"2, where

2=[z # C : A&1�2(B&zI ) A&1�2 has at least one eigenvalue in [&2, 2]],

which is a set of real numbers.
Indeed, the Cauchy formula

1
2?i |1z

- t2&4 (tI&A&1�2(B&zI) A&1�2)&1 dt

defines a matrix analytic function of z in C"2, where 1z is any simple
closed rectifiable curve, contained in C"[&2, 2], that strictly encloses all of
the eigenvalues of A&1�2(B&zI ) A&1�2 (the square root - t2&4 is taken as
before). Using the diagonal form of A&1�2(B&zI ) A&1�2 it is easy to see
that the above analytic function coincides with the definition of the square
root we have taken. The set 2 is included in R because for z # C"R, the
eigenvalues of A&1�2(B&zI ) A&1�2 are always in C"R (if not there exists a
nonnull vector u for which uA&1�2(B&zI) A&1�2u* is real; since A&1�2 and
B are hermitian, this implies that I (z) uA&1u*=0, which is impossible
when I (z){0 because A is nonsingular). We thus conclude that the
matrix function

A&1�2(B&zI ) A&1�2&- A&1�2(zI&B) A&1(zI&B) A&1�2&4I

is analytic in C"2, where 2/R, and x # 2 if and only if
A&1�2(B&zI ) A&1�2 has at least one eigenvalue in [&2, 2].

With this definition, we have the following expression for the function
� dWA, B(t)�(z&t):
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Corollary 2.3. Let A be positive definite and B hermitian. Then

|
dWA, B(t)

z&t
=

1
2

A&1(zI&B) A&1

&
1
2

A&1�2(- A&1�2(B&zI ) A&1(B&zI ) A&1�2&4I ) A&1�2,

(2.13)

when z � supp(WA, B).

Proof. The starting point is the matrix equation for the matrix function
FA, B :

A*FA, B(z) AFA, B(z)+(B&zI ) FA, B(z)+I=%.

If we write GA, B(z)=A1�2FA, B(z) A1�2, we get for GA, B(z) the equation

G2
A, B(z)+A&1�2(B&zI ) A&1�2GA, B(z)+I=%. (2.14)

From Lemma 1.1 we can take M>0 such that supp(WA, B)/[&M, M].
For a given real number z>M, we have that FA, B(z) is positive semi-
definite since WA, B is a positive definite matrix of measures and z&t>0
for t # supp(WA, B), and so is GA, B(z) because A is positive definite. Since
A&1�2(B&zI ) A&1(B&zI ) A&1�2&4I is positive definite for z large enough,
it follows that, for z positive and large enough, the solution of the equation
(2.14) equal to GA, B(z) can only be of the form

GA, B(z)= 1
2A&1�2(zI&B) A&1�2&T,

where the T is a square root of the matrix A&1�2(B&zI ) A&1(B&zI )
A&1�2&4I defined using the diagonal form and applying any choice of the
square root of the eigenvalues. Since limz � � FA, B(z)=%, we have that

GA, B(z)= 1
2A&1�2(zI&B) A&1�2

& 1
2 - A&1�2(B&zI ) A&1(B&zI) A&1�2&4I,

for z positive and large enough, where the square root of the matrix is
taken as it was explained above.

Hence we get that

|
dWA, B(t)

z&t
=

1
2

A&1(zI&B) A&1

&
1
2

A&1�2(- A&1�2(B&zI ) A&1(B&zI ) A&1�2&4I ) A&1�2,
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for z positive and large enough. But the expressions on both sides of the
previous equality are not analytic in supp(WA, B) and 2, respectively.
Hence, we deduce that 2=supp(WA, B), and the corollary is proved. K

Before going to the hermitian case, we give an example:

Example 1. We take

A=\1
0

0
1
4+ , B=\0

1
1
0+ .

A straightforward computation gives that

A&1�2(B&zI ) A&1(B&zI ) A&1�2&4I=\ z2

&10z
&10z
16z2 + .

This matrix has the following system of eigenvalues and eigenvectors:

17z2&5 - 16z2+9z4

2 \3z
4

+
- 16z2+9z4

4z
, 1+ ,

17z2+5 - 16z2+9z4

2 \3z
4

&
- 16z2+9z4

4z
, 1+ .

According to our choice for the matrix square root, we have

|
dWA, B(t)

z&t
=

1
2 \

z
&4

&4
16z+

&
1

2(- 17z2&5 - 16z2+9z4+- 17z2+5 - 16z2+9z4)

_\- 2 z2+- 32z4&200z2

&20 - 2 z
&20 - 2 z

64 - 2 z2+4 - 32z4&200z2+ .

where the square roots are chosen such that FA, B is analytic in C"[&5
2 , 5

2].

When A is hermitian we proceed as follows. Multiplying (2.11) to the
right by A, we find, taking into account that A is hermitian, that

(B&xI ) FA, B(x) A=AFA, B(x)(B&xI ), x # R. (2.15)
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Multiplying (2.11) to the right by (B&xI ) and using (2.15), we get the
following equation for FA, B(x), x # R:

AFA, B(x)(B&xI ) FA, B(x) A+(B&xI ) FA, B(x)(B&xI )+(B&xI )=%.

(2.16)

Write b1�b2� } } } �bN for the eigenvalues of B (they are real because
B is hermitian). It is clear that for x<b1 the matrix (B&xI ) is positive
definite. We now solve (2.16) as in the case when A is positive definite (see
Corollary 2.3). Indeed, set (B&xI )1�2 for the unique positive definite
square root of (B&xI ), x<b1 , KA, B(x)=(B&xI )1�2 FA, B(x)(B&xI )1�2

and TA, B(x)=(B&xI )1�2 A&1(B&xI )1�2. Then, we find for KA, B(x) the
equation

K 2
A, B(x)+T 2

A, B(x) KA, B(x)+T 2
A, B(x)=%, x<b1 , (2.17)

from which we get that

FA, B(x)= 1
2A&1(zI&B) A&1& 1

2A&1(B&xI )1�2

_[I&4(B&xI )&1�2 A(B&xI )&1 A(B&xI )&1�2]1�2

_(B&xI )1�2 A&1, (2.18)

when x<b1 with |x| large enough so that 1&4(B&xI )&1�2 A(B&xI )&1

A(B&xI )&1�2 is positive definite.
We now explain how to get an analytic continuation for the formula

(2.18). We take the square root such that - (bi&z)(bj&z), i, j=1, ..., N, is
analytic in C"[b1 , bN] and positive for positive numbers. With this choice,
for a given analytic matrix function L(z) in 0/C, we can define the
product (B&zI )1�2 L(z)(B&zI )1�2, or respectively (B&zI )&1�2 L(z)
(B&zI )&1�2, to be analytic at least in 0"[b1 , bN] (this is because the
entries of both matrix products are linear combinations of products of the
entries of L and ((bi&z)(bj&z))1�2, or ((bi&z)(b j&z))&1�2, respectively).
All the matrix products of this type which appear in the formula (2.18) are
defined in this way. We now explain how to take

- I&4(B&zI )&1�2 A(B&zI)&1 A(B&zI )&1�2.

To do this we need the following lemma, which will be proved at the end
of this section

Lemma 2.4. If A and B are hermitian matrices, then the matrix
(B&zI )1�2 A&1(B&zI )1�2 is diagonalizable except for at most finitely many
complex numbers in C"[b1 , bN].
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According to this lemma the matrix

1&4(B&zI )&1�2 A(B&zI )&1 A(B&zI )&1�2

is diagonalizable when z # C"[b1 , bN] except for at most finitely many
complex numbers, and its eigenvalues are of the form 1&4a&2, for a an
eigenvalue of (B&zI )1�2 A&1(B&zI)1�2. Taking the square root such that
|z&- z2&4|<2 for z # C"[&2, 2] and when (B&zI )1�2 A&1(B&zI )1�2

has all its eigenvalues in C"[&2, 2], we can define

- 1&4(B&zI )&1�2 A(B&zI )&1 A(B&zI )&1�2,

in the natural way (as we did for the case A positive definite), i.e., using the
diagonal form and applying the chosen square root to its eigenvalues.

This shows that the formula (2.16) defines an analytic function at least
in C"(2 _ [b1 , bN])], where

2=[x # C"[b1 , bN] : (B&zI )1�2 A&1(B&zI )1�2

has at east one eigenvalue in [&2, 2]]/R. (2.19)

Under additional hypothesis on A and B, the formula (2.16) can still be
analytic in a bigger set than C"[2 _ [b1 , bN]], because the multiplication
between the different roots which appear in the formula could extend the
analyticity of the product to some subintervals of [b1 , bN]. To illustrate
this fact, we give some examples:

Example 2. In the first example, we compare the formula (2.16) with
the one we gave in Corollary 2.3 assuming that A is positive definite.

To do this, consider the set of real numbers defined by (2.17) and write
21 for

21=[x : A&1�2(B&zI ) A&1�2 has one eigenvalue in [&2, 2]]/R.

For x # R"[b1 , bN] we define the square root (B&xI )1�2 of (B&xI ) in the
following way: (1) for x<b1 , since (B&xI ) is positive definite, we take
(B&xI )1�2 as its unique positive definite square root; (2) for bN<x, since
(B&xI ) is negative definite, we take (B&xI )1�2 as its unique square root
of the form iT with T positive definite. Then, for x # R"[b1 , bN] we have
that

A&1�2(B&xI ) A&1�2=((B&xI )1�2 A&1�2)* ((B&xI )1�2 A&1�2)

(B&xI )1�2 A&1(B&xI )1�2=((B&xI )1�2 A&1�2)((B&xI )1�2 A&1�2)*,
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which gives that for x # R"[b1 , bN] the matrices A&1�2(B&xI ) A&1�2 and
(B&xI )1�2 A&1(B&xI )1�2 have the same eigenvalues and so 2"[b1 , bN]=
21"[b1 , bN]. A simple computation also shows that both formulas for FA, B

((2.13) and (2.18)) define the same function, and then, the formula (2.18)
is, in this case, also analytic for z # [b1 , bN]"21 , which in general is not
empty, as the following example shows: Take

A&1�2=\1
0

0
- 2+ , B=\0

2
2
0+ .

This gives

A&1�2(B&xI ) A&1(B&xI ) A&1�2&4I=\ x2+4
&6 - 2 x

&6 - 2 x
4x2+4 + ,

which is not positive definite in

21=_&�13+- 153
2

, &�13&- 153
2 &_ _�13&- 153

2
, �13+- 153

2 & ,

and it is clear that

[&2, 2]"21=_&�13&- 153
2

, �13+- 153
2 &{<.

Example 3. Assume that (B&zI )&1�2 A(B&zI)&1 A(B&zI )&1�2 is
diagonal. In this case the analyticity of FA, B can be extended to those
points x of the interval [b1 , bN] for which (B&xI )1�2 A&1(B&xI )1�2 has
its eigenvalues in C"[&2, 2]. We illustrate this with the following example:

A=\1
0

0
&1+ , B=\1 1

1 1+ .

Then, we have

(B&zI )&1�2 A(B&zI )&1 A(B&zI)&1�2=
1

z2&2z
I.

and the evaluation of (2.18) gives that

FA, B(z)=&
1
2 _\

1&z
&1

&1
1&z++�1&

4
z2&2z \

z&1
1

1
z&1+& ,
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which is analytic in C"[[1&- 5, 0] _ [2, 1+- 5]]. Notice that only for
x # [1&- 5, 0] _ [2, 1+- 5] one of the eigenvalues of the matrix

(B&xI )1�2 A&1(B&xI )1�2=- x2&2x \1
0

0
&1+

is in [&2, 2], and that FA, B(z) is in this case analytic on the whole interval
[b1 , b2]=[0, 2].

We have solved the matrix Eq. (2.11) for A hermitian and in a simpler
way for A positive definite, hence one can ask if for (Pn)n in the matrix
Nevai class M(A, B), there is a sequence of unitary matrices (Vn)n in such
a way that the sequence (VnPn)n is in the Nevai class M(A$, B$) with A$
hermitian, or even better positive definite. The answer is no. First we prove
that it is not possible to force A$ to be positive definite. Indeed, let us
consider the Chebyshev matrix polynomials (U A, B

n )n where

A=\1
0

0
&1+ , B=\1 1

1 1+ .

The matrix coefficients in the three-term recurrence relation for (VnU A, B
n )n

are given by Vn&1AV n*, VnBVn*. First, it is easy to see that the matrix
Vn&1AV n* is unitary and so, it is normal. Hence it is unitary diagonalizable
and its eigenvalues are 1 or &1. If the sequence (Vn&1 AVn*)n converges to
a positive definite matrix, we deduce that its eigenvalues converge to the
eigenvalues of this positive definite matrix; hence, for n big enough the
eigenvalues of Vn&1 AVn* must be equal to 1; i.e., for n big enough we get
Vn&1AV n*=I, which gives Vn=Vn&1A. It is now straightforward to check
that the sequence (VnBnV n*)n cannot be convergent because B{ABA.

Proceeding in a similar way with the Chebyshev matrix polynomials
(U A, B

n )n where now

A=\ i
0

0
1+ , B=\1

1
1
1+ .

it can be proved that for any sequence (Vn)n of unitary matrices, for which
(Vn&1AV n*)n converges to a hermitian matrix, the sequence (Vn BVn*)n

does not converge.
To finish this section we prove Lemmas 2.2 and 2.3. To do this we use

the following result:
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Lemma 2.5. Let aN(z), ..., a0(z) be polynomials with complex coefficients
and aN(z) not identically zero, and consider the polynomial

pz(t)=aN(z) tN+aN&1(z) tN&1+a1(z) t+a0(z). (2.20)

Then
(1) except for finitely many z's the polynomial pz(t) has the same

number of different roots.

(2) if we denote these roots by :1(z), ..., :m(z) then the coefficients of
the polynomial

qz(t)=(t&:1(z)) } } } (t&:m(z)),

are rational functions in the variable z.

Proof. The lemma is a consequence of the following fact: given two
polynomials rz(t), sz(t) of the form (2.20) with dgr(rz)�dgr(sz), either (a)
rz(t), sz(t) have a common root only for finitely many z's; (b) rz(t) can be
decomposed in a product of at least two polynomials of the form (2.20)
with the property that any two of these factors have a common root only
for finitely many z's; or, finally, (c) rz(t)=a(z)(t&b(z))m where a(z) and
b(z) are polynomials in the variable z.

Indeed, rz(t) and sz(t) have a common root if and only if the resultant
R(rz , sz)=0 (see [J, p. 309]). But the resultant R(rz , sz) is a polynomial in
the variable z, so we deduce that if R(rz , sz) is not identically zero, then
rz(t) and sz(t) have a common root only for finitely many z's (the roots of
R(rz , sz)). Otherwise, R(rz , sz) is identically zero and then for all z rz(t)
and sz(t) have a common root. If this happens then, by applying Euclid's
algorithm to rz(t)=sz(t)=0, we can find a polynomial b(z) (not identically
zero) such that b(z) rz(t)=uz(t) vz(t) where uz(t) and vz(t) are polynomials
of the form (2.20) with degree greater than 0. Then, the result follows by
applying the same procedure to uz and vz .

To prove the lemma we proceed by induction on N. The result is trivial
for N=1. Assume now the result for N, and take a polynomial pz(t) of
degree N+1 whose coefficients are polynomials in the variable z. Since
pz(t) has a double root and pz(t), p$z(t) have a common root are equivalent
properties, we deduce from the result proved above that, either (a) pz(t)
has simple roots except for finitely many z's, or (b) pz(t) can be decom-
posed in a product of at least two polynomials of the form (2.20) with the
property that any two of these factors have a common root only for finitely
many z's, or, finally, (c) pz(t)=a(z)(t&b(z))m where a(z) and b(z) are
polynomials in the variable z. From (a) and (c) the proof follows directly.
From (b) the proof follows straighforwardly by applying the induction
hypothesis. K
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Now, we prove Lemma 2.2: Given A and B hermitian matrices, let pz(t)
be the characteristic polynomial of Az+B,

pz(t)=det(tI&Az&B)=tN+aN&1(z) tN&1+a1(z) t+a0(z),

where the aN&1(z), ..., a0(z) are polynomials with real coefficients. We now
apply the previous lemma to pz(t) and find the polynomial

qz(t)=(t&:1(z)) } } } (t&:m(z)),

whose coefficients are rational functions in the variable z and where, except
for at most finitely many z's, :1(z), ..., :m(z) are the different eigenvalues of
Az+B. From this it follows that the matrix function F(z)=qz(Az+B) is
analytic in C"2, where 2 is a finite set of complex numbers.

According to the characterization of diagonalizable matrices (see [HJ1,
Corollary 3.3.8, p. 145]), Az+B is diagonalizable if and only if qz(Az+B)
=%. Since for x real the matrix Ax+B is diagonalizable (it is hermitian),
we have that F(x)=%, for x # R"2 and then, since F(z) is analytic in C"2,
it follows F(z)=%, for z # C"2, that is, Az+B is diagonalizable except for
at most finitely many z's. K

It is worth noting that there are indeed points such that Az+B is not
diagonalizable. For instance, if we take

A=\ 2
&i

i
2+ , B=\0

1
1
0+ ,

and z=i, we have that the matrix Ai+B is not diagonalizable.
The proof of Lemma 2.3 is similar, because the characteristic polynomial

of (B&zI )1�2 A(B&zI )1�2 is also of the form (2.20).

3. CHEBYSHEV MATRIX POLYNOMIALS OF THE
SECOND KIND

In this section, we will give an explicit expression for the matrix of
measures WA, B , when A is positive definite. To do this, let us consider the
matrix polynomial under the square root in the formula (2.13) given in
Corollary 2.3 for the Hilbert transform of WA, B , that is,

HA, B(z)=A&1�2(B&zI ) A&1(B&zI ) A&1�2&4I.

From Lemma 2.2 we have that &HA, B(z) is diagonalizable except for at
most finitely many complex numbers z's, hence we can diagonalize it in the
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form &HA, B(z)=U(z) D(z) U&1(z), where D(z) is a diagonal matrix with
entries di, i (z), i=1, ..., N.

Since for x real &HA, B(x) is hermitian, it is always diagonalizable with
U(x) U(x)*=I and di, i (x) is real for i=1, ..., N. We will prove that the
matrix of functions WA, B(x), x # R, has the form

dWA, B(x)=
1

2?
A&1�2U(x)(D+(x))1�2 U*(x) A&1�2dx, (3.1)

where D+(x) is the diagonal matrix with entries d +
i, i (x)=max[d i, i (x), 0].

In the formula (3.1), we take the positive square root of the positive entries
of the diagonal matrix D+(x).

First, we remark that the definition of WA, B does not depend on the
choice of the diagonal form of HA, B , as it can easily be proved (see also
[HJ2, p. 407�408]).

From its definition it is clear that WA, B is a positive definite matrix of
measures and that when &HA, B(x) is positive definite or semidefinite,

dWA, B(x)=
1

2?
A&1�2(4I&A&1�2(B&xI ) A&1(B&xI ) A&1�2)1�2 A&1�2 dx.

In the following theorem we prove that the matrix of measures WA, B

has, indeed, the form given by (3.1) and show other important properties
for WA, B :

Theorem 3.1. If A is positive definite and B hermitian, the matrix weight
WA, B for the Chebyshev matrix polynomials of the second kind defined by
(1.2) is the matrix of measures given by (3.1). WA, B is absolutely continuous
with respect to the Lebesgue measure multiplied by the identity matrix, with
a continuous matrix Radon�Nikodym derivative and lives on a finite union of
at most N disjoint bounded nondegenerate intervals whose extreme points are
some roots of the scalar polynomial

det(A&1�2(B&zI ) A&1(B&zI ) A&1�2&4I ).

Proof. From the inversion formula for the Hilbert transform it is
enough to prove that

1
2?

A&1�2U(x)(D+(x))1�2 U*(x) A&1�2

=&
1

2?i
lim
y � 0

(FA, B(x+iy)&FA, B(x&iy)) , x # R.
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For a fixed real number x, we have that &HA, B(x) is hermitian. Hence
according to [R, Theorem 1, pp. 33�34] there exist analytic matrices U(z),
D(z), at x such that, for z in a neighbourhood of x, U(z) is nonsingular,
U(x) is unitary, D(z) is diagonal and

&HA, B(z)=U(z) D(z) U&1(z).

We then write

FA, B(z)= 1
2A&1(zI&B) A&1& 1

2A&1�2U(z) - &D(z) U&1(z) A&1�2,

where we take the square root as explained in the Introduction.
Then we have

lim
y � 0+

(FA, B(x+iy)&FA, B(x&iy))

=&
1
2

lim
y � 0

A&1�2(U(x+iy) - &D(x+iy) U&1(x+iy)

&U(x&iy) - &D(x&iy) U&1(x&iy)) A&1�2.

We now consider the eigenvalues &di, i (x), i=1, ..., N, of HA, B(x), that is,
the entries on the diagonal of the diagonal matrix &D(x). It is clear that
&di, i (x)=a2

i, i (x)&4 where ai, i (x) is an eigenvalue of A&1�2(B&xI ) A&1�2;
if di, i (x)<0, that is, if ai, i (x) � [&2, 2], there exists a complex
neighbourhood of x such that for z in that neighbourhood the real part of
ai, i (z) is not in [&2, 2], and so according to our choice for the square
root, we have

lim
y � 0+

(- &di, i (x+iy)&- &di, i (x&iy))=0.

In a similar way, if di, i (x)>0, that is, if a i, i (x) # (&2, 2), there exists a
complex neighbourhood of x such that for z in that neighbourhood the real
part of ai, i (z) is in (&2, 2). Taking into account that ai, i (z� )=ai, i (z) and
that the sign of I (ai, i (z)) is equal to &sign(I (z)) (because A is definite
positive and B is hermitian), we have that

lim
y � 0+

(- &di, i (x+iy)&- &di, i (x&iy))=2i - d i, i (x).

Finally, if di, i (x)=0, that is if ai, i (x)=\2, we have

lim
y � 0+

(- &di, i (x+iy)&- &di, i (x&iy))=0.
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Hence, it is clear that

&1
2 lim

y � 0+
A&1�2(U(x+iy)[- &D(x+iy)

&- &D(x&iy)] U&1(x+iy)) A&1�2

=&iA&1�2U(x)(D+(x))1�2 U&1(x) A&1�2.

To finish the proof, it is enough to notice that

(U(x+iy) - &D(x&iy) U&1(x+iy))

&(U(x&iy) - &D(x&iy) U&1(x&iy))

=[U(x+iy)&U(x&iy)] - &D(x&iy) U&1(x+iy)

+U(x&iy) - &D(x&iy) [U&1(x+iy)&U&1(x&iy)],

and to take into account that U(z) is analytic at x (and hence continuous)
and that D(z) is bounded on the neighbourhood of x.

We now prove the properties of the support of WA, B . From its defini-
tion, it is clear that the Radon�Nikodym derivative of WA, B is not % at x
if and only if there exists i, 1�i�N, for which di, i (x)>0, that is, if and
only if &HA, B(x) has at least one nonnegative eigenvalue. Taking into
account that &HA, B(x)=&(A&1�2(B&xI ) A&1�2)2+4I, it follows that the
Radon�Nikodym derivative of WA, B is not % at x if and only if
A&1�2(B&xI ) A&1�2 has at least one eigenvalue in (&2, 2).

But the support of WA, B can also be described in the following way: con-
sider the polynomials 2m(HA, B(z)), m=1, ..., N, where 2m(T ) denotes the
principal minor of a matrix T corresponding to its m first rows and
columns. Then, we have that

supp(WA, B)=int([x # R : there exists m, 1�m�N

such that 2m(HA, B(z))�0]). (3.2)

Indeed, the continuity of the eigenvalues gives that the support of WA, B

can not have isolated points, hence, the characterization of positive
definiteness gives the above description of the support of WA, B .

Now, for each m, 1�m�N, the polynomial 2m(HA, B(z)) has the form

2m(HA, B(z))=2m(A&2) z2m+terms of lower degree.

Since 2m(A&2)>0, we deduce that the support of WA, B is a union of at
most (N(N+1))�2 bounded nondegenerate intervals, whose extreme points
satisfy 2m(HA, B(z))=0 for some m, 1�m�N.
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Actually, we can prove more about the support of WA, B . To do that, we
consider the set of real numbers in the numerical range of the matrix
polynomial HA, B(x) (see [GLR, p. 276]), that is, the set

R & NR(HA, B)=[x # R : there exists u # CN"[%] : uHA, B(x) u*=0].

It is clear that R & NR(HA, B)=A1 _ A2 _ A3 , where

A1=[x # R : HA, B (x) is positive semidefinite]

A2=[x # R : HA, B (x) is negative semidefinite]

A3=[x # R : HA, B (x) has two eigenvalues of opposite sign].

From the definition of WA, B it follows that

A3 /supp(WA, B) (3.3)

Since A1 _ A2 /[x : det(HA, B(x))=0], we have that

A1 _ A2 is a finite set of real numbers. (3.4)

Using Corollary 10.16, p. 277 of [GLR] we see that R & NR(HA, B) is a
finite union of at most N disjoint closed intervals and isolated points,

\.
k

i=1

[+2i&1 , +2i]+_ \.
m

j=1

[vj]+ ,

where +1< } } } <+2k , (k�N), vi{vj , i{ j, are some roots of the scalar
polynomial det(HA, B(x)). From (3.3) and (3.4) it follows that

\.
k

i=1

[+2i&1 , +2i]+/supp(WA, B).

We now take an interval [:, ;], :<;, for which there exists m,
1�m�N, such that

2m(HA, B(:))=2m(HA, B(;))=0

and (3.5)

2m(HA, B(x))<0, for x # (:, ;).
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From (3.5) it follows that HA, B(:), HA, B(;) are neither positive definite
nor negative definite, and so there exists nonnull vectors u1 , u2 such that
u1 HA, B(:) u1*=u2 HA, B(;) u2*=%. In other words

:, ; # R & NR(HA, B)=\.
k

i=1

[+2i&1 , +2i]+_ \.
m

j=1

[vj]+ .

From this we deduce that

[:, ;] _ \.
k

i=1

[+2i&1 , +2i]+
is again a disjoint union of at most N closed nondegenerate intervals whose
extreme points are some zeros of the scalar polynomial det(HA, B(x)). Since
[:, ;]/supp(WA, B), we have again that

[:, ;] _ \.
k

i=1

[+2i&1 , +2i]+/supp(WA, B).

Since this is true for all the intervals satisfying (3.5), (3.2) implies that
actually supp(WA, B) is a disjoint union of at most N bounded non-
degenerate intervals whose extreme points are some zeros of the scalar
polynomial det(HA, B(x)).

We finally prove the continuity of the Radon�Nikodym derivative of
WA, B . According to [GLR, p. 394], we can choose matrix functions U(x),
D(x) which are analytic for x real and such that &HA, B(x)=U(x) D(x)
U*(x). The result follows because the definition of (D+)1�2 clearly give a
continuous matrix function. K

We now give some examples:

Example 1. We again take

A=\1
0

0
1
4+ , B=\0

1
1
0+ .

The system of eigenvalues and eigenvectors for HA, B(x)=A&1�2(B&xI )
A&1(B&xI ) A&1�2&4I (see the first example of the last section) shows that
one of the eigenvalues of HA, B(x) is always positive, and the other is
negative for &5

2�x� 5
2 ; hence

(D+(x))1�2=\
- 5 - 16x2+9x4&17x2

- 2
0+ .

0 0
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From this we get

dWA, B(x)=
1

2?

- 5 - 16x2+9x4&17x2

- 16+9x2
/[&5�2, 5�2](x)

_\
3|x|+- 16+9x2

2 - 2

2 - 2 sign(x)

2 - 2 sign (x)

&6 |x|+2 - 16+9x2

- 2 + dx,

where

1, if x>0,

sign(x)={&1, if x<0,

0, if x=0.

Example 2. We take

A=\1 0
0 &1+ , B=\1 1

1 1+ .

This second example is not covered by Theorem 3.1, because A is
not positive definite. From the expression given in the previous section
(Example 3) for FA, B(z) we find, by applying the inversion formula for the
Hilbert transform, that

dWA, B(x)=
1

2? �
4

x2&2x
&1

__\1&x
&1

&1
1&x+ /[1&- 5, 0] (x)

+\x&1
&1

&1
x&1+ /[2, 1+- 5](x)& dx.

The entries of WA, B are clearly absolutely continuous with respect to the
Lebesgue measure, but in this case, their Radon�Nikodym derivatives are
not continuous (even not bounded) at x=0 and x=2.

The knowledge of the support of WA, B when A is positive definite allows
us to characterize the support of the matrices of measures in the matrix
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Nevai's class M(A, B), when A is positive definite. This characterization
completes the Blumenthal's theorem for orthogonal matrix polynomials
studied in Section 3 of [DL].

Corollary 3.2. Assume that W is a positive definite matrix of measures
in the Nevai class M(A, B), where A is positive definite. Then the support of
W is a finite union of at most N disjoint bounded nondegenerate intervals
whose extreme points are some roots of the scalar polynomial

det(A&1�2(B&zI ) A&1(B&zI ) A&1�2&4I ),

and possibly, some sequences of real numbers outside this union which tend
to the extreme points of the intervals.

Proof. Consider the orthonormal matrix polynomials (Pn)n which
satisfy the three-term recurrence formula (1.1), where the matrix sequences
(An)n and (Bn)n tend to A and B, respectively. We now form the N-Jacobi
matrix associated to this sequence of matrix polynomials, that is,

J=\
B0

A1*
0
b

A1

B1

A2*
b

0
A2

B2
. . .

0
0

A3
. . .

} } }
} } }
} } }
. . . + .

Since (An)n and (Bn)n converge, the operator associated to the matrix J in
the Hilbert space l 2 is bounded, hence from Section 3 of [D3] it follows
that W is the unique orthogonalizing matrix of measures for (Pn)n and that
the support of W coincides with the spectrum of J.

Consider now the N-Jacobi matrix associated to the Chebyshev polyno-
mials of the second kind (U A, B

n )n , that is (take into account that A is
hermitian),

J� =\
B
A
0
b

A
B
A
b

0
A
B
. . .

0
0
A
. . .

} } }
} } }
} } }
. . .+ .

Since (An)n and (Bn)n tend to A and B, respectively, we deduce that the
operator defined by J&J� is compact, and then, by a well-known theorem
by H. Weyl, J and J� have the same essential spectrum. Again by using
Section 3 of [D3] we conclude that the spectrum of J� is the support of
WA, B , and the theorem is proved. K
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When A is positive definite, it is possible to give an expression of the
Chebyshev matrix polynomials as matrix functions of Chebyshev scalar
polynomials. Indeed, we show that

U A, B
n (t)=A&1�2un \A&1�2(tI&B) A&1�2

2 + A1�2, (3.6)

where (un)n is the sequence of Chebyshev polynomials of the second kind.
The expression un((A&1�2(tI&B) A&1�2)�2) means the value of the polyno-
mial un at the function ((A&1�2(tI&B) A&1�2)�2) defined in the usual way.

Indeed, consider the three-term recurrence relation for the Chebyshev
polynomials of the second kind:

tun(t)= 1
2un+1(t)+ 1

2 un&1(t), u0(t)=1. (3.7)

Setting R0(t)=1 and

Rn(t)=un \A&1�2(tI&B) A&1�2

2 + , n�1,

we get from (3.7) that

tA&1�2Rn(t)=A1�2Rn+1(t)+BA&1�2Rn(t)+A1�2Rn&1(t). (3.8)

Taking into account that U A, B
0 (t)=I, (3.5) follows from (3.7).

4. THE DEGENERATE CASE

In this section we study the case when the limit matrix A is singular.
We start by proving Theorem 1.2 which guarantees the existence of ratio

asymptotics also in this case.

Proof of Theorem 1.2. We proceed as in the proof of Theorem 1.1 but
using the matrix polynomials Rn(t)=tnI instead of the sequence (U A, B

n )n .
In this case, we want to guarantee the existence of limn � Rl (t) d+n(t), for
l�0, where the matrices of measures +n are defined as in (2.1), although
here we are not able to find an explicit expression for these limits as we did
in the proof of Theorem 1.1. The reason for this difficulty in finding the
value of these limits (which would determine the matrix of measures & of
Theorem 1.2) was given in the Introduction. In Theorems 4.1 and 4.2 of this
section we find these limits for some particular cases. We will use a quite dif-
ferent auxiliary sequence of polynomials (Rl) l in each case, which will
illustrate the difficulty of finding the value of these limits in the general case.
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As in (2.6), we write again

Rl (t) Pn&1(t)=S l, n(t) Pn(t)+ :
n

i=1

2i, l, nPn&i (t)

and find that

| RA, B
l (t) d+n(t)=| :

n

i=1

2i, l, n Pn&i (t) dW(t) P*n&1(t)=21, l, n .

Hence, it is enough to guarantee the existence of limn � � 2k, l, n , for k, l�0.
We proceed by induction on l. For l=0 the result is clear since 21, 0, n=I

and 2i, 0, n=% for i{1.
The definition of the matrix polynomials (Rl)l and the three-term

recurrence formula for (Pn)n give that

2k, l+1, n=2k, l, n Bn&k+2k&1, l, nA*n&k+1+2k+1, l, nAn&k .

Using the induction hypothesis and limn An=A, limn Bn=B, it is easy to
conclude that limn � � 2k, l, n exists for k, l�0.

We set 21, l for limn 21, l, n , l�0.
We now take any limit point & of (+n) (there exists such a limit from

Banach and Alaoglu's theorem because +n is a positive definite matrix of
measures and � d+n=I, n # N), and proceeding as in the proof of Theorem
1.1, we deduce that

| R l (t) d&(t)=21, l , l�0.

But & has compact support (see Lemma 2.1), and since the matrix polyno-
mials (Rl) l form a basis of the space of matrix polynomials, & is determined
by � Rl (t) d&(t). Actually we have proved that (+n)n has only one limit
point &, and hence, this & is the limit of (+n)n . Hence, it follows that

lim
n |

d+n(t)
z&t

=|
&(t)
z&t

.

We now conclude again as in the proof of Theorem 1.1.
Putting FA, B(z)=� (d&(t)�(z&t)), we get from the three-term recurrence

relation for the matrix polynomials (Pn)n that

zI=F &1
A, B(z)+B+A*FA, B(z) A,
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and hence

A*FA, B(z) AFA, B(z)+(B&zI) FA, B(z)+I=%. K

We now prove that the matrix of measures & which appears in Theorem 1.2
is always degenerate. More precisely, we show that � (tI&B) d&(t)(tI&B)
is singular, and therefore & can not have a sequence of orthogonal matrix
polynomials.

To do that we compute the first three moments of the matrices of
measures +n defined by (2.1). The quadrature formula for the orthonormal
matrix polynomials (Pn)n gives that

| d+n(t)=I, n�0.

By using again this quadrature formula we have

| t d+n(t)=| tPn&1(t) dW(t) P*n&1(t),

where W is the matrix weight for (Pn)n . The three-term recurrence formula
for these polynomials gives that

| t d+n(t)=Bn&1 , n�0.

By using again this three-term recurrence relation we have:

| t2 d+n(t)= :
m

k=1

xn, k (An Pn(xnk)+Bn&1Pn&1(xnk)

+A*n&1Pn&2(xnk)) 1nkP*n&1(xnk).

The definition of 1nk and Theorem 2.3(3), p. 1184 of [D4] show that
Pn(xnk) 1nk=%, and then the quadrature formula for the orthonormal
matrix polynomials (Pn)n gives that

| t2 d+n(t)=Bn&1 | tPn&1(t) dW(t) P*n&1(t)

+A*n&1 | tPn&2(t) dW(t) P*n&1(t).
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Using again the three-term recurrence relation we find

| t2 d+n(t)=Bn&1Bn&1+A*n&1An&1 .

From this computation we get

| (tI&B) d+n(tI&B)=Bn&1 Bn&1&BBn&1&Bn&1B+BB+A*n&1An&1 .

Taking the limit as n � � we finally have that

| (tI&B) d&(tI&B)=A*A,

which is singular because A is so.
In the scalar case a positive measure + is degenerate, i.e., + has moments

of every order but does not have a sequence of orthogonal polynomias, if
and only if + has finite support, or in other words, + is a finite combination
of Dirac deltas. In the matrix case, there are more possibilities for a
positive definite matrix of measures W to be degenerate (see [D3, p. 96]).
The rest of this section is devoted to some examples

Example 1. Assume

A=\0
0

a
0+ , a{0, B=\b

c
c
d+ , c{0. (4.1)

As we wrote in the Introduction this is a very interesting case because it
corresponds with scalar orthonormal polynomials with periodic recurrence
coefficients (period 2) defined by

tpn(t)=an+1pn+1(t)+bn pn(t)+an pn&1(t), n�1, (4.2)

where p0(t)=1, p&1(t)=0, and

a2n=a, a2n+1=c,

b2n=b, b2n+1=d.

In this case, we can identify the matrix of measures which appears in
Theorem 1.2:
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Theorem 4.1. Assume that A and B is given by (4.1). Then the matrix of
measures & which appears in the Theorem 1.2 is given by

&=1\
1

t&b
c

t&b
c

\t&b
c +

2+ +,

where + is the positive measure with respect to which the sequence of scalar
polynomials defined by (4.2) is orthonormal.

Proof. To simplify we assume that

A=\0
0

a
0+ , B=\0

1
1
d+ .

We consider the matrix J2, where J is defined by (1.9),

J2=\
B� 0

A�
%
b

A� *
B�
A�
b

%
A� *
B�
. . .

%
%

A� *
. . .

} } }
} } }
} } }
. . .+ ,

where

B� 0=B2+A*A

B� =B2+AA*+A*A

A� =AB+BA;

the matrix J 2 is again block three diagonal because A2=%. According
to the definition of A and B, we have A� =( a

0
ad
a ), from which we find

that A� is nonsingular. Hence, we can define the matrix polynomials Rl ,
l�0, by

R0(t)=I,

t2R0=A� *R2(t)+B� 0 R0(t),

t2R2l=A� *R2l+2(t)+B� R2l (t)+A� R2l&2(t), l�1,

R2l+1(t)=(t&B) R2l (t), l�0.
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We proceed again as in the proof of Theorem 1.1 but using the sequence
(Rl) l instead of (U A, B

l ) l . Writing

R2l (t) Pn&1(t)=S l, n(t) Pn(t)+ :
n

k=1

2k, l, nPn&k (t), (4.3)

we prove that

lim
n

2k, l, n={I,
%,

if k=l+1
otherwise.

(4.4)

We proceed by induction on l. The case l=0 is trivial. For l=1, a
straightforward computation gives that

21, 1, n=A� *&1[(Bn&1Bn&1+A*n&1An&1 )&B� 0],

22, 1, n=A� *&1(Bn&1 A*n&1+A*n&1Bn&2) ,

23, 1, n=A� *&1(A*n&1A*n&2) .

Hence limn 21, 1, n=%, limn 22, 1, n=I and limn 23, 1, n=% (the latter because
A2=%).

By using the definition of R2l and the three-term recurrence relation for
(Pn)n we get for k�2 that

2k, l+1, n=A� *&1(2k+2, l, n[An&k&1An&k]

+2k+1, l, n[Bn&k&1 An&k+An&kBn&k]

+2k, l, n[An&k+1A*n&k+1+B2
n&k+A*n&k An&k]

+2k&1, l, n[Bn&k+1 A*n&k+1+A*n&k+1 Bn&k]

+2k&2, l, n[A*n&k+2A*n&k+1])

&A� *&1B� 2k, l, n&A� *&1A� 2k, l&1, n

and for k=1 that

21, l+1, n=A� *&1(23, l, n[An&2An&1]+22, l, n[Bn&2An&1+An&1Bn&1]

+21, l, n[B2
n&1+A*n&1An&1]) .

The induction hypothesis, the fact that A2=A*2=% and an easy computa-
tion show that (4.4) holds.
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Since � R2l (t) d&(t)=limn 21, l, n , we have that

| R2l (t) d&(t)={I,
%,

if l=0
l�1.

We now show that

| R2l+1(t) d&(t)={A,
%,

l=1
l{1.

(4.5)

Using (4.3) and the quadrature formula for the orthonormal polynomials
(Pn)n , it follows that

| R2l+1(t) d&(t)=| (t&B) R2l (t) d&(t)

=lim
n

(21, l, nBn&1+22, l, n An&1&B21, l, n ) ,

and hence, (4.5) follows from (4.4).
We now find an expression of the matrix polynomials (Rl) l in terms of

the scalar polynomials ( pn)n defined by (4.2). Indeed, from the definition
of the sequence of polynomials Rl , it follows that R2l is even for all
l�0, hence, by setting Tl (t)=R2l (- t), we have defined a sequence of
polynomials (Tl) l which satisfies the three-term recurrence formula

T0(t)=I, tT0=A� *T1(t)+B� 0T0(t),

tTl=A� *Tl+1(t)+B� Tl (t)+A� Tl&1(t), l�1.

If we iterate the three term recurrence relation given by (4.2), we find a five
term recurrence relation for the polynomials ( pn)n of the form

t2pn(t)=:n+2 pn+2(t)+;n+1 pn+1(t)+#n pn(t)+;n pn&1(t)+:n pn&2(t).

(4.6)

If we consider the 5-Jacobi matrix J� associated to this five term recurrence
relation, that is, the 5-banded infinite hermitian matrix defined by putting
the sequences (:n)n , (;n)n , (#n)n which appear in the recurrence relation
(4.6) on the diagonals of the matrix J� , we find that this matrix J� just coin-
cides with J2. Hence by using the relationship between scalar polynomials
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satisfying a five term recurrence relation as (4.6) and 2_2 orthonormal
matrix polynomials given in Section 2 of [DV], we deduce that

R2l (t)=T l (t2)=\
p2l, E (t)

p2l+1, E (t)

p2l, O(t)
t

p2l+1, O(t)
t + ,

where pn, E , pn, O denote the even and odd parts of the polynomial pn ,
that is,

pn, E (t)=
pn(t)+ pn(&t)

2
, pn, O(t)=

pn(t)& pn(&t)
2

.

Consider now the matrix of measures &~ given by

&~ =\1
t

t
t 2+ +

where + is the positive measure with respect to which the sequence of scalar
polynomials defined by (4.2) is orthonormal. Then, taking into account
that pn= pn, E+ pn, O , we have that

| R2l (t) d&~ (t)=| \ p2l (t)
p2l+1(t)

tp2l (t)
tp2l+1(t)+ d+(t),

| R2l+1(t) d&~ (t)=| \ tp2l (t)
tp2l+1(t)

t2p2l (t)
t2p2l+1(t)+ d+(t)

&B | \ p2l (t)
p2l+1(t)

tp2l (t)
tp2l+1(t)+ d+(t).

The orthonormality of ( pn)n with respect to + and the recurrence formula
(4.2) gives that for l�3

| R l (t) d&~ (t)=%.

Taking into account the form of A and B, we deduce that

| R0(t) d&~ (t)=I, | R1(t) d&~ (t)=%,

| R2(t) d&~ (t)=%, | R3(t) d&~ (t)=A.
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Since the sequence (Rl) l forms a basis of the linear space of polynomials,
any matrix of measures W with compact support is determined by
� Rl (t) dW(t) and hence we deduce that &=&~ , and the theorem is
proved. K

In a similar way the general case of orthogonal polynomials with peri-
odic recurrence coefficients of period N can be studied. This case appears
when A and B have the form given by (1.10).

Example 2. Another possibility for the degenerateness of the matrix of
measures & appears when & is equal to a matrix whose entries are Dirac
deltas, in some subspace of CN. We now give a condition on the matrices
A and B which implies the occurrence of this case

Theorem 4.2. Assume that there exists u # Ker(A*)"[%] such that
uBn # Ker(A*) for all n�0. Set V for the linear span of uBn, n�0. Consider
the diagonal form of B (let us recall that B is hermitian),

B=U* \
d1

0
b
0

0
d2

b
} } }

} } }
} } }
. . .
0

0
0
b

dN
+ U,

where U*U=I and d1 , ..., dN are real numbers. Then, the matrix of measure
& which appears in Theorem 1.2 is such that v&=v&~ for v # V, where &~ is the
matrix of measures defined by

&~ =U* \
$d1

0
b
0

0
$d2

b
} } }

} } }
} } }
. . .
0

0
0
b

$dN
+ U.

Before going to the proof, we remark that the assumption in this
theorem automatically holds if some of the eigenvectors of B belong to
Ker(A*).

Proof. Consider the matrix polynomials Rl (t)=(tI&B) l, l�0, and
write

Rl (t) Pn&1(t)=S l, n(t) Pn(t)+ :
n

k=1

2k, l, n Pn&k (t),
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as in the proof of Theorem 1.1. Then, for v # V we prove that

lim
n � �

v2k, l, n={v,
%,

l=0,
l�1.

Indeed, using the definition of the polynomials Rl and the three-term
recurrence relation for (Pn)n we find the formula

2k, l+1, n=2k, l, n Bn&k+2k&1, l, nA*n&k+1+2k+1, l, nAn&k&B 2k, l, n .

It is now enough to proceed by induction, taking into account that
V/Ker(A*) and vB # V, for all v # V.

As in the proof of Theorem 1.1, it follows that

| Rl (t) d+n(t)=21, l, n ,

where +n are the matrix of measures defined by (2.1). Since & is the limit
of +n , we deduce that for v # V,

v | R l (t) d&(t)={v,
%,

l=0,
l�1.

But, from the definition of the matrix of measures &~ , it is clear that for any
v # CN,

v | R l (t) d&~ (t)={v,
%,

l=0,
l�1.

Since (Rl) l is a basis of the space of matrix polynomials, and &, &~ have
compact support, we get that v&=v&~ , for v # V. K

To illustrate this case, we give the following example:

A=\0
1

0
0+ , B=\1

0
0
2+ .

Here, u=(0, 1) # Ker(A*) and uB=2u. Solving the equation for
� (d&(t)�(z&t)), we have that

|
d&(t)
z&t

=\
z&2

z2&3z+1

0

0

1
z&2+ ,
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from which we find

&=\
5+- 5

10
$(3&- 5)�2+

5&- 5
10

$(3+- 5)�2 0 + .

0 $2
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